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Abstract. Commutation relations between fields and their conjugate momenta cannot be 
imposed on the light front x0+x3=c0nstant without any further ado because, as a rule, 
canonical momenta are functions of the fields themselves rather than of the velocities 
leading to constraints between fields and momenta. To perform light front quantization, 
Dirac’s method for the quantization of constrained systems is applied. Quantization is 
carried out through the Dirac bracket evaluated by means of constraints. An interesting 
relation between first-class constraints and boundary conditions is pointed out. Elec- 
trodynamics is quantized in a similar manner. If the gauge A+= 0 is imposed, constraints 
become second class, subsidiary conditions do not arise but constraints modify the result of 
naive quantization in a definite way. 

1. Introduction 

In the instant form of dynamics (Dirac 1949) the initial conditions are given on the 
hyperplane x o  = constant and the Hamiltonian describes the evolution of a system in 
time. In the light front formulation initial conditions are given on the hyperplane 
x +  = x o  + x 3  = constant and correspondingly, the commutation relations are prescribed 
on a plane x+=constant. In spite of the formal similarity the latter case differs 
significantly from the instant form. The situation can be simply illustrated in the case of 
a scalar field. In the instant form the kinetic energy of the Lagrangian contains the term 
$ao+ao#, therefore, the canonically conjugate momentum n- = a2/aao+ = ao4 is expres- 
sed in terms of the velocity. In the light front formulation, however, the corresponding 
term is d+q5&4 and the conjugate momentum thus takes the form n- = d2’/&3+4 = a-4 
which is not a velocity since it contains a derivative with respect to x -  = x 0 - x 3 ,  rather 
than with respect to x +  which plays the role of time. Thus from the point of view of 
Hamiltonian mechanics a constraint between condinates and momenta arises resulting 
in the following questions: what happens to the constraints in the course of time and are 
they respected by the Hamiltonian? How should the commutation relstions be given 
for a constrained system? The answers to these questions provided by Dirac (1964) 
may be summarized as follows. One has to work out the conditions whereby the 
constraints hold in time, i.e. they should be consistent with the Hamiltonian of the 
system. Then, generally speaking, new constraints arise and the procedure is to be 
continued until the system of constraints becomes closed. Constraints obtained in this 
manner are divided into two groups. First-class constraints have to be considered as 
subsidiary conditions when quantizing the theory, i.e. these constraints restrict the 
Hilbert space of physical states, whereas second-class constraints are strong operator 
identities which modify the commutation relations in a definite way. This method has 
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been applied in the quantization of gauge fields (Hasenfratz and Hrask6 1974) as well as 
in two-dimensional quantum electrodynamics for constructing a bag theory (Shalloway 
1975). For other applications of light front quantization the reader is referred to 
Weinberg (1966), Bjorken (1969), Bjorken and Paschos (1969), Bjorken et a1 (1971), 
Fubini and Furlan (1965), Drell eta1 (1969a, b, 1970a, b), Drell and Yan (1970a, b) and 
Yabuki (1975). After circulation of the preprint of the present paper, A J Hanson has 
drawn my attention to a book by Hanson et al(1976), where an approach similar to ours 
is presented. 

In addition to the Hamiltonian method of Dirac the problem of quantization can be 
approached by Lagrangian theory too. Chang and Ma (1969a, b) and Chang et a1 
(1973, see also Rohrlich 1971) used the Lagrangian approach and starting with 
Schwinger’s action principle the generators induced by variation of field on a surface 
x +  = constant are constructed. The commutator of the generators with fields yields the 
variation of fields and the commutation relations are to be imposed in accordance with 
this relation. However, the action principle cannot be applied without any further ado 
because one cannot know a priori which field quantities have to be considered 
independent on the light front (for details, see Chang et a1 1973, pp 1135, 1144). In 
Dirac’s method no ambiguity arises. In addition to mathematical rigour, this method is 
preferable in another respect; namely, in Schwinger’s method the generators of the 
PoincarC group are obtained from the action principle and relativistic covariance is 
proved by showing that these generators satisfy the Poincart: algebra through the field 
commutators. Nevertheless, it is still to be shown that the field theory obtained in this 
way is the quantization of just that classical theory we intended to quantize. This 
problem does not arise at all in Dirac’s method since we start with a classical theory 
where constraints are present and we quantize this theory. On the other hand, some 
disadvantage results from using Dirac’s method here in that Bose and Fermi systems 
cannot be treated on the same basis. As Fermi systems have no classical limit, the 
classical field theory to be quantized does not exist. Although, it is possible to introduce 
classical systems which exhibit a Fermi-like behaviour and Dirac’s method can be 
formally extended to this case, it turns out, however, that the transition from the 
Poisson bracket to the anticommutator would need to be accomplished by a factor 
dependingon the total differential added to the Lagrangian at the start (Kilnay 1973). 
This non-physical conclusion means that in quantization of Fermi systems the 
Schwinger method has to be applied, since here the requirements of the classical limit 
do not arise. 

The paper is organized as follows. In Q 2 light front quantization of the real scalar 
field is performed. It is shown that in addition to second-class constraints a first-class 
constraint is present which, however, vanishes whenever the field is subject to correct 
light front boundary conditions. 

In 0 3 light front quantization of quantum electrodynamics is performed. It is shown 
that if the gauge A+ = 0 is imposed all constraints become second class. These modify 
the field commutator in a definite manner and no restriction of the Hilbert space to 
physical states is necessary. 

2. Light front quantized scalar field 

The familiar light front variables 

x = (xl, x 2 )  0 . 3  x +  = x 0 + x 3 ,  x - = x  - x ,  
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will be used. With these the scalar product can be written in the form 

x,y' = $(x+y- +x-y') -xkyk. 

Covariant and contravariant derivatives are related by 

The time variable is now x+ and x-, xl, x2 are continuous labels for enumerating 
coordinates. Thus if the scalar field is considered as a mechanical system with 
generalized coordinates q,(t), the correspondence qa(t) + 4x-,x1,xz(x+) = 4(x) should be 
made. Denoting by ~ ( x )  the momentum conjugate to 4(x), in the continuous case the 
Poisson bracket (PB) is given by 

Here and subsequently the PB is related to equal x+ values. When multicomponent 
fields are present summation over discrete variables in addition to integration is 
understood. 

For quantizing the scalar field we start with the action 

S = I d4.LY(x) = $ I dx+ dx- d2.LY(x) = I dx'L 

where 

L = $ I dx- d 2 f l ( x )  

is the Lagrangian, which, for the real scalar field takes the form 

The momentum conjugate to 4 is 

It is evident that we have a singular Lagrangian (Dirac 1964) since the momentum 
a_4(x) is expressed through the coordinates rather than through the velocity. One 
therefore has the primary constrain1 

x =  w-a-4 =a (2.5) 
Actually this is not a single constraint but a continuously infinite set of constraints at 
each point (x-, x). The Hamiltonian is given by 

H =  dx-d2x*(x)a+4(x)-L=~ dx-d2x(a#&+mZ42). (2.6) I I 
This does not contain the velocities, nor even the momenta. The constraints are now 
added by multipliers to the Hamiltonian: 

HT=H+ I dx-d'x u(x)(.rr(x)-a-+(x)). (2.7) 
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Using equations (2.2) and (2.7) one gets the consistency condition for the constraints: 

a+X = a+(r - a-4) = h, HT} = takak4 - i m 2 4  - 2a-U. 

The condition for the constraint to hold in time is 

a-u =!(aka,4-m24).  (2.8) 
The constraint holds in time provided that U ( X )  satisfies (2.8). No further step is 
necessary. It is easily seen that an equation for U ( X )  means at the same time that the 
constraint is of the second class. From now on U ( X )  in HT is considered as satisfying 
(2.8). 

The equation of motion for 4(x) is simply 

a+4 = {4, HT} = U (4. 

(4a+a--akak + m 2 ) 4  = (o+m2)4 = 0. 

Substituting this into the condition (2.8) the familiar equation of motion is obtained: 

As the constraint is of the second class, no subsidiary condition should be imposed. 
To perform the quantization one has to evaluate the Dirac bracket according to the 
definition (Dirac 1964) 

{E  GI* = 2 {F, XA}GLGIB, GI 

where F and G are two arbitrary dynamical quantities, xA are second-class constraints 
and CA is the inverse of the matrix of constraints CAB = GIA, xB}  formed from the 
second-class constraints. In the present case 

A B  

CAB -* c ( x ,  y ) = k ( x ) ,  x ( y ) } = - 2 a - s ( x - - y - ) s 2 ( x - y ) .  (2.9) 

(The derivative is always related to the first variable, i.e. a - S ( x - - y - )  = 
( a / a x - ) s  ( x -  - y -) .) 

This matrix can be easily inverted: 

C ' ( x ,  y )  = -$ . (X--y- )S2(X-y) .  

The inverse, however, is not unique. This problem is discussed later on. 
Using the ordinary P B  of 4 ( x )  and r ( y ) ,  

M X ) ,  d Y  )I = 6 ( x -  - Y -)s2(x - Y )  (2.10) 

the Dirac bracket according to (2.9), is 

W),  d Y ) } *  ={4(x), d Y ) } - [  du- d2u dv- d244(x),  X ( U ) ) C ' ( U ,  v)cu(u) ,  4 Y ) )  

= s ( x -  - y - ) s 2 ( x  - y ) - &x - - y - ) s 2 ( x  - y )  = &x- - y -)s2(x - y ) .  (2.11) 

Transition from the Dirac bracket to the commutator should be performed according to 
{4, T}* + -i[4,7r], therefore 

[ 4 ( x ) ,  d Y ) l  = M x -  - Y -M2b -y), ( X +  = Y + ) .  (2.12) 

It should be noted that the naive way of quantization which ignores the constraints gives 
a false result. Subtraction of the degrees of freedom frozen in modifies the result of 
naive quantization by a factor of 1/2. 
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A second-class constraint can be replaced by zero within the Dirac bracket, 
therefore 

{ 4 ( x ) ,  d Y )  -a-+(y))*  = 0 

M X ) ,  d Y ) } *  = { + ( x ) ,  a -4 (Y) ) * .  

or 

With this the quantization condition can be written as 

By evaluating the Dirac bracket of the fields one gets 

M X ) ,  4 ( Y ) ) *  = - $ 4 X - - Y - ) S 2 ( x - Y )  

(2.13) 

(2.14) 

therefore, 

[+(XI, +(Y 11 = & ( x - -  y - )a2(x  - Y )  

which is, of course, consistent with (2.13). The commutator of ~ ( x ) ,  ~ ( y )  can be 
obtained in a similar way but it is simpler to take the derivative of equation (2.13) with 
respect to x - .  

It is worthwhile looking at the origin of non-uniqueness of the inverse of the 
constraint matrix 

C ( X ,  y )  = & ( x ) ,  x ( y ) ) =  - 2 a - S ( x - - y - ) S 2 ( x - y ) .  

It will be shown that there is an interesting connection between this ambiguity and the 
characteristic initial value problem. Namely, it will be shown that: 

( a )  there is a hidden set of first-class constraints in the problem; 
( b )  this is closely related to the characteristic initial value problem and the above 

non-uniqueness, as well as the first-class constraints, becomes eliminated 
whenever the field 4 ( x )  is subject to correct light front initial conditions. 

The inverse of C(x, y )  is not unique because 
c - 1 =  -1 4 E ( X - - y - ) S 2 ( X - y ) - a ( x + , X ;  y )  

also satisfies the relation I dz-  d2zC(x, z)C.-'(z, y ) =  S ( x - - y y - ) S 2 ( x - y ) .  

Here a is an arbitrary function of its arguments. 
The matrix of constraints has to be constructed from the second-class constraints. 

The constraints x ( x )  are apparently of the second class since the matrix & ( x ) ,  ~ ( y ) }  
does not vanish identically for any fixed value of x. It is easy to see, however, that there 
exists a linear combination of constraints commuting with each constraint ~ ( x ) .  
Namely, the combination 

2 = dx- d2xA(x', x ) x ( x )  (2.15) 

commutes with each of the remaining constraints, where A ( x ' , x )  is an arbitrary 
function independent of x - :  

L?, xb)) = 0. (2.16) 

I 
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The reason for non-uniqueness of the inverse constraint matrix was simply the presence 
of the first-class constraints in the set ~ ( x ) .  The first-class constraints 2 appear in the 
Hamiltonian as well. To see this recall that the consistency condition for the constraint 

(2.17) 

The constraint holds in time provided u(x) is any particular solution of (2.17). The 
general solution of (2.17) reads 

x(x) is 
a-u = :(akak+ - m24). 

U (X) = dy - d2yc (X- - )'-)a '(X - y)(& ak4 (y ) - m '4 (y )) - A(X+, X) 

= uO(x)-A(x+, X) 

I 
where the part of u(x) determined uniquely has been denoted by uo(x). The total 
Hamiltonian can be written with this as 

HT=H+j dx-d2x uo(x),y(x)-j dx- d2x A(x+,x)~(x). 

It has been proved by Dirac that the contribution arising from the homogeneous 
solution of the equation for u(x) is always a first-class constraint. However, without 
referring to this it can be verified directly that 

as was indicated in (2.16). 
The appearance of the first-class constraint has an interesting consequence. Physical 

quantities are those whose PB vanish with each first-class constraint. It follows that in 
this sense the field 4(x) itself is not a physical quantity since 

{4(x), a1 = Ab+,  r) + 0. 

Whereas the derivative of the field with respect to x -  is a physical quantity since 

{a-& E} = 0. 

The situation is analogous to electrodynamics: the field 4(x) plays the role of the vector 
potential and a-#(x) is the 'field strength'. The main difference, however, is that in 
contrast to electrodynamics the gauge freedom vanishes whenever the field 4(x)  is 
subject to correct boundary conditions. Let &4(x) = +(x), then 

X- 

4(x)= I-, dx-+(x)-A(x+, x). 

A possible boundary condition is that 4(x) vanishes for each x+ at x - +  -a (Rohrlich 
1971). The requirement of this boundary condition for 4(x) implies A(x+, x) = 0. It is 
possible to impose the boundary condition 4(x- = a)=-~$(x- = -m). In this case 
A(x', x) is determined uniquely again: 

A(x', x) = f I dx-+(x). 
00 

--a0 

It is seen that the gauge freedom is only apparent since the gauge function is 
determined by the boundary conditions. 
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Let us proceed to the problem of the Dirac bracket. A linear manifold of constraints 
~ ( x )  is given, Idx-d2xu(x)~(x) ,  where a(x) is an arbitrary function. It contains a 
linear subspace of the first-class constraints jdx-d2x A(x+,x)x(x). The complementer 
space gives the second-class constraints needed for the evaluation of the Dirac bracket. 
Therefore, an arbitrary linear combination of constraints has to be decomposed 
uniquely into two parts in such a way that one of them should yield the first-class 
constraints jdx- d2x A(x+, x ) ~ ( x ) .  One can write 

I dx-d2x a(x)x(x)= I dx-d2x(u(x)+A(x',x))X(x)-l dx-d2x Nx', x)x(x). 
(2.18) 

However, this decomposition is not unique but becomes unique by imposing a definite 
boundary condition on the coefficient ul(x) = a(x)  + A(x', x), e.g. 

(2.19) al(x- = oo)=-al(x- = -03). 

In this case A(x+, x) is expressed in terms of a(x) in a unique way: 

A(x', x) =$(u(x+,  X -  = a, X) +u(x' ,  x - =  -00, x). 

Therefore, second-class constraints are obtained by combining the constraints X(X) 
with coefficients satisfying condition (2.19). This requirement is met for example by the 
following linear combination: 

f ( x )  = a I dy- d2y e(x -  - y-)S2(x -y)x(y]. 

Then the matrix of constraints becomes 

C(x, y) = G(x), f(y)} = $e(x--y-)S2(x - y ) .  

P ( x ,  y )  = 2a-S(x--y-)S2(x -y). 

It already has a unique inverse, 

The Dirac bracket of 4(x) and ~ ( y )  can now be written 

M x ) ,  dy)}* =W), d y ) } - -  I du- d2u du- d2u{4(x), f(u)}C-'(u, v)Wu),  T(Y>} 

=$S(x--y-)S2(x -y). 
Hence the above more vigorous treatment leads to the same result for the Dirac bracket 
of 4(x) and ~ ( y )  as was obtained formerly in (2.11); however, it gives an insight into an 
interesting connection between boundary conditions and first-class constraints. A 
similar procedure could be carried out also for the electromagnetic field. However, as 
the main features of this rigorous treatment can also be seen from the scalar field the 
discussion of this problem will be omitted. 

For the proof of covariance of the theory the generators of the PoincarC group, 
M,,, P, have to be shown to satisfy the Lie algebra of the PoincarC group. The ten 
generators can be given in the form 

P+ = H = a dx- d2x(ak4ak4 + m 242) I 
P- = dx- d2x ra-4 J 
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where X is the Hamiltonian density 

x = i ( a k 4 a k d  + m2&2). 

It is straightforward but somewhat tedious to show that as a consequence of field 
commutators the above generators really satisfy the Lie algebra of the PoincarC group. 

3. Light front quantum electrodynamics 

For quantization of the electromagnetic field first the extended Hamiltonian is 
evaluated in an arbitrary gauge and then the consistency conditions of the constraints 
are worked out. In this way also first-class constraints arise which ought to be treated as 
subsidiary conditions. The gauge A +  = 0 is imposed, however, converting each con- 
straint into a second-class one. 

We start with the action integral 

S = d4x3(x) = I dx+L(x) 

where 

L(x) = I dx- d2x9(x). (3.1) 

The Lagrangian density of the electromagnetic field can be given as 

Z(X) = -iFfi,FMy 

with 

F~~ = a 4 ,  - a,A,. 

In light front coordinates the components of Ffiy are expressed in terms of field 
strengths by 

F+, = -;F-' = _- :(El -B2), 

2F -&I + Bz), 

F+z = -;F2 = -;(E2 + B1) 
F- --I c2=-1 

2 -  2F 2(E2-B1) 
F-, = -1 +' = 

F +- =-1p-=1 4 2E3, F12 = F12 = B3. 
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In terms of these the Lagrangian (3.1) can be written 

The vector potentials A, are considered as dynamical coordinates, their conjugate 
momenta being 

v+ = SL/Sa+A+ = 0 (constraint) (3.2) 

T k  = SL/Sa+Ak = Fk- (constraint) (3.3) 
v-  = 6L/Sa+A- = 2F-+. (3.4) 

The first three of the canonical momenta v+, v ' ,  v2 yield constraints, whereas the 
last equation (3.4) does not because v-  is related to the velocity and coordinate, 
v-= 2(a+A--a-A+). 

The Hamiltonian has the form 

H = dx- d2X d"d+A, - L I 
(3.5) 

The total Hamiltonian is obtained by adding the constraints to (3.5) by Lagrangian 

HT = H +  dX- d2X[U+v++ U k  ( T k  -t F-k)]. (3.6) 

multipliers : 

The consistency condition for the constraint T+ = 0 is 

A new, secondary constraint, corresponding to case ( b )  of § 2 arises, therefore we have 

a - v - + a k v  k =o. (3.7) 

The secondary constraint must hold in time, again: 

a+(a-v-+a,vk)  = {a -v -+a ,v  k , H ~ ) =  0. 

This condition does not lead to a new constraint; instead it turns to an identity. 
The condition for the remaining constraints (3.3) takes the form 

a+(vk + F-k) = { I l k  -I- F-kFHT} = $ai& - ; a k T -  + 28-4  = 0 

i.e. functions uk have to satisfy 

a - U k  =$(akT-+a,Fkr). (3.8) 

One now has to decide whether the constraints are of the first class. If they are one must 
add them to the Hamiltonian with some multipliers. The secondary constraint (3.7) 
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proves to be of the first class because 

{ a - r - ( x ) + a k r k ( x ) ,  a - r - ( y ) + a k r k ( y ) }  = o 
{ a - r - ( x ) + a k r k ( x ) ,  T+(Y)}= 0, { a - r - ( x )  + d k r k ( x ) ,  d ( y )  +F-,(Y)) = 0. 

The most general motion of the electromagnetic field is described by the extended 
Hamiltonian 

As the original Hamiltonian (3.5) also contains a term - ( a - r - + d k r k ) A +  one can 
incorporate it into the multiplier U by introducing U ’  = v -A+. Collecting the terms 
arising from ( 3 . 3 ,  (3.6) and (3.9) we finally arrive at the following extended Hamilto- 
nian: 

HE = dX- d2X[+(6)2 +$&ek] + dx- d2X[U+r++ U k ( T k  +F-k) d ( a - T - + a k T k ) ] .  

(3.10) 

The multipliers uk are considered as satisfying the consistency condition (3.8). The 
remaining coefficients U+, U’ are completely arbitrary, describing the gauge freedom of 
the system and the freedom incorporated in them does not concern the time evolution 
of physical quantities; nevertheless, the coefficients generally show up in equations of 
motion of vector potentials. It proves useful to impose the gauge A+ = 2 A -  = 0, and 
a,Ap = 0 which will restrict the coefficients U+, U’. 

Before proceeding further let us look at the degrees of freedom which describe the 
electromagnetic field in this gauge. Maxwell equations a ,P”  = 0 reduce to 

OA, = 0 (3.11) 

provided that a,Aw = 0. One can still perform a gauge transformation with a gauge 
function satisfying OA = 0. This can be used for imposing the gauge A- = 0 with which 
the Lorentz condition assumes the form 

(3.12) 

I I 

a,Ap = 2a+A-+2a-A+-akAk = 0 

i.e. 

2a-A+-akAk = 0. (3.13) 

This is clearly a constraint for A+ rather than an equation of motion. The time 
evolution of A+ is determined by A k  and thus an equation of motion is obtained merely 
for two quantities AI and A2. 

Let us go back to the extended Hamiltonian (3.10) and consider the consistency 
condition for the gauge A- = 0, 

1 a+ A - = {A -, HE} = z r -  - 8- U ’ 
i.e. the gauge chosen holds in time provided that 

a d  = $T-. (3.14) 

According to (3.13) the Lorentz condition now reads 2a-A+-akAk = O .  This is a 
counterpart to the radiation gauge divA = 0 imposed in the instant form of elec- 
trodynamics. The consistency condition a+(2a-A+ - a k A k )  = 0 implies the relation 
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between the multipliers 

2a-u+ - a k u k  +akakUl= 0. (3.15) 

Hence, the Lorentz condition and the gauge A +  = 2A- = 0 hold in time if U+ and U ’  
satisfy relations (3.14) and (3.15). 

To sum up, the following constraints have been obtained: 

The new constraints arising from the choice of gauge are obviously second class for 
their consistency conditions lead to equations for the multipliers. Indeed, all six types of 
constraints are of the second class since none of them has zero PB with the remaining 
ones. The importance of the order of the steps taken should be stressed. Before fixing 
the gauge the constraint x6 = &r-+ akTk proved to be a first-class one and was the 
reason for adding it to HT in order to obtain the most general motion. At this point the 
procedure could be finished; in this general formulation we are not bound to choose any 
particular gauge. However, having fixed the gauge the constraint x3 = A -  fails to 
commute with x6, and consequently, no longer remains a first-class constraint. Each 
constraint we have is a second-class one, therefore the entire Hilbert space will be 
physical and no subsidiary condition will need to be taken into account. It was for this 
reason that the above gauge was chosen. 

Before proceeding to the quantization it is worthwhile looking at the equations of 
motion arising from (3.10), i.e. 

a+A+ = 0, a+A- = 0, d+Ak = Uk - a k U ’  

In addition we have the constraints xA = 0 (A = 1,  . . . , 6 )  and the equations for the 
multipliers (3.8), (3.14) and (3.15) resulting in 

(4a+a- - ak ak )A, = CIA, = o ( i ,  k = 1,  2). 

where the following notation is used 

(3.18) 
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In terms of these, the matrix of constraints is - 
0 2D- 0 0 0 0 

2D- 0 0 -D1 -D2 Dkk 

0 0 0 O 0 -D- 

0 -D1 0 -2D- 0 0 

0 Dkk -D- 0 0 0 

0 -D2 0 0 -2D- 0 

- 

. (3.19) 

- - 
-(D; + D3/8Df 1/2D- Dkk/2D! -D1/4D? -D2/4D! 0 

1/2D- 0 0 0 0 0 

0 0 -1/2D- 0 0 

Dkk/2D! 0 0 0 0 -1/D- 

-D1/4D! 

-D2/4D! 0 0 0 -1/2D- 0 

Gb, Y )  = 

- 0 0 -1/D- 0 0 0 -  

D1 ~ ( x ,  y )  = a  [ du- d2u Dl(x - u)DS2(u - y). 
4D- 

It is easy to verify the following equalities: 

(3.23) 

The matrix (D-)-3 occurring in the 1,l element of the matrix C L  is not well defined. 
This term appears in the Dirac bracket {A+(x), A+(y)} only. Here we evaluate, instead, 
{A+(x),  a-A+(y)}* which is already defined. This is obviously not a serious problem in 
that A+ is not an independent degree of freedom but subject to the constraint 
x2 = 2a-A+ - &Ak = 0 and the above Dirac bracket merely serves to ensure the validity 
of this constraint which contains only the combination &A+. 
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(3.24) 

For evaluating the Dirac bracket of A, and T” we need the PB’S of these quantities with 
the constraints: 

{ A , ( ~ ) , x A ( Y ) } = { s = D ( ~ - ~ ) , o , o ,  ~ @ ( x - y ) ,  S ; D ( X - Y ) ,  

-S,D-(X - y ), -8;Dk (X - y )} (3.25) 

~ A ( x ) ,  T”(Y)}=(O,  ~ S : D - ( X - Y ) - S ; I D ~ ( X - Y ) ,  S I D ( x - y ) ,  S W ~ ( X  - y )  

-S ;D-(x-y) ,  S Y D ~ ( X - Y ) - S ; D - ( X - Y ) ,  0). (3.26) 

In addition to the notation given by (3.18) the notation D(x - y )  = S(x--y-)S2(x - y )  
has been used here. 

Substituting the PB’S given by (3.25) and (3.26) into the Dirac bracket (3.24) one gets 

(3.27) 

{ A k ( X ) ,  Al(y)}*= -a8:E(X--y-)62(X-y) (x’ = y’). 

where k ,  1 = 1 ,2 ;  p = +, -, 1 ,2  and the derivatives of S functions are always related to 
the first variable. 

We remind the reader that all PB’S between A, vanish, therefore, non-zero values 
on the right-hand side of (3.27) are consequences of the constraints. 

Taking into account the PB’S 

{A&), ..”(Y)} = s1/m- -Y -)S2(x - y ) ,  {.rr”(X), ..”(y>}= 0 

the Dirac brackets between A,, T” and ?I”, T” can be obtained in a similar manner, 
namely: 

{A&), ..+(Y>}* = 0 

{ A - ( x ) ,  .rr”(Y)}* = 0 

(3.28) 
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Transition to quantization must be accompiished by replacing the Dirac bracket by the 
commutator according to {F, G}* + -i[& G]X+=Y+. Thus for instance, the last relation 
in (3.27) should be replaced by the commutator 

[Ak(X), A,(y)]= -&&(X--y-)S2(x -y). (3.29) 

Since the constraints are of the second class they must hold as operator identities. 
Thus e.g. the commutator of the constraint A- = 0 with any quantity, must vanish 
including T- in spite of the fact that the PB of these quantities is non-zero, 
{A-(x), r - ( y ) } =  S(x--y-)S*(x - y ) .  The contribution from the constraints just can- 
cels the S function in the Dirac bracket. It is easy to check that the remaining 
constraints are also fulfilled strongly. 

The ten generators of the PoincarC group are as follows: 

P+ = H =  HE = I dx- d2X[i(T-)2-k$Fjk] 

with 

For the proof of relativistic covariance it is not sufficient to show that these 
generators satisfy the Lie algebra of the PoincarC group since we now have a non- 
covariant gauge A- = 0. If this gauge is imposed in a certain frame of reference and a 
Lorentz transformation is performed then the condition A- = 0 in general is violated. 
Therefore, one has also to make a gauge transformation in order to ensure the 
fulfilment of A- = 0 in the new frame. These combined Lorentz and gauge transforma- 
tions yield a representation of the Lorentz group. However, the Dirac bracket 
generates both of these transformations automatically. Suppose an infinitesimal 
Lorentz transformation of the vector potential is performed. Then the variation of A- 
is given by the Dirac bracket of the above generators MP,, with A-. We know, however, 
that the second-class constraint A- = 0 can be set equal to zero within the Dirac 
bracket, i.e. A- remains unchanged. In other words the Dirac bracket is constructed in 
such a way that the non-covariant gauge A- = 0 holds in any frame of reference. 
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